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We consider the problem of excitation of mechanical oscillations in linear oscillatory SYS- 
tems. We show that t.he+solution obtained by the method of small parameter for the case when 
resonance is absent in the oscillating system, can be used to find the resonant oscillations. 
We also propose a generalization of the MalkinGhimanov theorem on periodic solutions of 

quasilinear systems of ordinary differential equations ([I], Chapt. 2, Section 9) extending 
this theorem to the problems of excitation of oscillations in the systems with distributed 

parsmeters. 

1. When sty oscillating system exhibits displacements which are small compared with 

the characteristic dimension of the exciter (such are the problems of dynamics of systems 
with mechanical vibrators [2 to 41), then the equations of the problems of excitation of mech- 

anical oscillations contain a small parameter and cau therefore be written as 

‘p- = cf, (rp, t) + F@ (9, E, E’, E”, t, pf, 

Mu” + yBu’ + CU = f [i Qr (cp, cu.) Qr t- F - f .] (1-f) 
i-=1 

Here d = (&,..., St& is a vector whose components sre used to describe the work (mo- 
tion) of the exciters, IJ is a N-dimensional vector or an element of a Hilbert space H charac- 

terizing the configuration of the oscillatory system; M, B and C are N x N matrices whose 
components either are time-independent or are linear operators in H; qt ,..., qm are either 

given constant vectors or elements of Ii’ describing the distribution of forces generated by 

the exciters over the system; [= (tt,..., [,,.) &= (u, qr), r = l,..., m; a bracket denotes a 
scalar product and f, y > 0 and p > 0 are scalar parameters, the last ,of which is assumed 

to be sufficiently small. 
Equations of the problem of excitation of mechanical oscillations can be reduced to (1.1) 

also in some of the cases when the displacements indicated above are of the order of the 
ty 

r5P 

ical dimension of the exciters. Problems on the oscillations generated by electromagnets 
are an example of such a case. 

We assume that the terms of equations of motion which describe the feedback effect of 

the generated oscillations on the exciters and which enter @t&1, 
tions of the coordinate IL. They depend on the magnitudes [t,..., f 

,...I, are not direct fzno 
m which shall be called 

the “feedback parameters”. This can be explained by the fact that the physical interpreta- 

tion of et,..., c, end th e f arm of 8 and Q, are usually independent of the form assumed& 

the oscillating system and of the method of introduction of the coordinate u. The latter only 
define the vectors qr. In the case of electromagnets, the distances between their armature9 
and cores (51 become the feedback parameters, while in the case of mechanical vibrators, 
the displacements of their axes 141. 
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In this paper we shall consider the case for non*self-contained systems only, although 
oar arguments shall also be valid in the case of self-contained systems. The right-hand 
sides of Eqs. (1.1) are assumed to be Zn-periodic in time, which enters the equations ex- 
plicitly. Usual assumptions [I] about their smoothness are made, and we consider Zrr-perio- 
die solutions. 

When oscillations appear in a linear oscillatory system under the action of an exciter, 
we must consider two csses, resonant and nonresonant, separately. They will correspond 
to different properties of the solution of the problem on the forced oscillations of the oscil- 
latory system when the drivind forces are given, Let us consider the case, when au applied 
load is an-periodic and distributed over the system according to the law defined in the 

terms of one of the vectors q, 

Mu,” + yBu,’ + Cu, = F (t) qr (1.2) 
We shall calculate the feedback parameters &t ,..., r!& for the 2n-periodic solution of 

this equation. When the system is nonresonant then we should have, for any sufficiently 
smooth F(t), z,,s = 
x 

(max 1 frt. I): fmax 1 F(t) 1) = O(1) for r, s = l,..., m. In the resonant case 
= 0(1/p) for at least one pair of values r, 8, Moreover, in accordance with the physical 

dymands of the problem the parameter f should, in the nonresonant case, be not small i.e. 
f= O(l), while in the resonant case f= O(u). Let us now assume that the given Zn-periodic 
aolutians 

cpro, = (p(O) (t, a), cp(Oj= @t(O), . . . . t&(O)), a = (al ,..., aj) 
of the system 

cpcot” = Q, (cp(O), t) (4 *3) 
form a family with j constants a t,..., u.~ (the case of an isolated generating solution is of 

little interest in the study of forced oscillations; we should also note that, when the oscil- 
latory forces are small, then only the generating solution needs to be determined 141). Let 
us suppose as well that 2n-periodic solutions z t, ,..., zk, (i = l,..., j) of a system conju- 
gate to the system 

(1.4) 

$+P&+*.. t- i.$.& = 0 (P= i, . . ., n), Pr3 = (r, P=1 , .:.,k) 
t$dpP(O) 

written in the terms of variations of (1.3) are known, and that there are exactly j solutions. 
We shall utilize the fact that the functions @, @ and Qr depend only on properties of the ex- 
citers, and not on the form of the oscillating system. Then, expressions for the parameters 
of the generating solution a1 ,,.., U, and driving forces Qj”) computed in accordance with 

the generating solution as well as the stability conditions, can be presented for the non- 
resonant case solely in the terms of components of the amplitude and phase frequency mat- 
rix characteristics of the oscillating system. This can be done as follows. 

Inserting (1.3) into Q,(#, o5.1 and expanding the latter into trigonometric polynomials 
(as in [4 and 51) or (in the general case) into the Fourier series, we obtain 

Q!“’ (t, u) = x Q!Y (a) CO9 (vt - sr, (d)) (r = 1, . . .( m) (I 3 

Let us now introduce the matrices Kv = Ilk v(‘*)ll and yv = [I$ vtr’)ll defining the ampli- 

tudes and phase shifta of the feedback parameters when the oscillations generated by knowo 
unit hsnnonfc forcsa of frequency V, are steady. Magnitudes k ,,(r’) and Gv(r*) are given by 

ES”’ L= k?’ co9 (v6 - 9t”‘), 6s”’ = (Up, q& (1.6) 
where a#~ ue 2n/v-periodic solutions of 

Mum’” + yB&” + Cuti” = cos vtq, (1.7) 
Let us now write the expressions for the feedback puameters. It is 
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kt” = ; x Q:’ (a) fkl’“’ cos (vt - 6,” (u) - I/I?‘> (s = i, . . ., ,,q (1.8) 
t=1 Y 

They are computed from the generating solution and contain the components of the mat- 
rices K, and ‘pV as parameters. 

Further, inserting (1.3) and (1.8) into small parts of the first k Eqs. of (1.1) (the result- 

ing vector is denoted here by 9,) and setting up the equations defining the parameters of 

the generating solution in the usual [ 11 manner, we obtain j equations 

0 B=l 

where v assumes either all or some of the values which it t.akes in (1.51. 
Next we obtain the parameters U, = U, *,..., aj = U, * which form the solution of (1.91 

in terms of the components of K, and ‘Y,, substitute them into (1.5). This yields the rela- 

tions 

(1 .lO) u; =&(. . .,fKV, Y,,. . .) (i=l,..., i) 

g.=&.(t ,..., fKY,Yv ,... ), Q~'=Q!"'(t,...,fK",y",...) (r=L...,m) 

defining the oscillations generated by the given exciters in any linear oscillating system, 
provided that the matrices K, and ‘vt, are found for this system for all u appearing in (1.91. 

This is equivalent to solving a problem on forced oscillations (the corresponding problem 

on rvnchronization of mechanical vibrators was dealt with in 141, while the oscillations 
generated by electromagnets were investigated in [5]1. It now remains to show that the re- 
lations obtained can also be used in the resonant case. 

2. Matrices K, and yV can be obtained for both, oscillating systems with a finite num- 

ber of degrees of freedom and for the systems with distributed parameters, and for this rea- 

son the above method of reducing the problem on the excitation of oscillations to the prob- 

lem on forced oscillations embraces, formally. both types of systems. In the cases however, 
when the oscillating system falls into the pattern characteristic of the system with distri- 
buted parameters, a question arises whether periodic solutions of (1.1) exist and, whether 
the sequence of approximations usually present in the method of small parameter, conver 
ges to them. In this connection we may find useful the following simple generalization of a 
theorem first proved by Malkin and later, more vigorously, by Shimanov (11, Chapt. 2, Sea 
tion 91. 

Let us assume that the state of the given physical system is defined by an element n of 
the linear space U and let m linear functionals [, (ul,..., t,(s) be also defined on I!/. Let 

also the periodic solution of equations of motion of the system acted upon by given perio- 
dic forces (these equations may be partial differential equations, equations with time delay 
e.a.1 generate a correspondence between m given Bn-periodic functions F,(t),..., F,(t) 
(which can be interpreted as loads) and a 2rr-periodic function u(t), the correspondence be- 
ing assumed linear. We shall denote this by u(r) + (Ft(t),...,F,(t)).Finally let us assnme 
that the %n-periodic function u(r) exists and is continuous for any 2n-periodic functions 
F 1 S---S F, possessing a continuous first order derivative (*). 

Following c61 we shall say that the system possessing the above properties has a “weak 
generalized filter property on the class of functions possessing continuous first order deri- 
vatives”, if for any F(t) belonging to this class the following inequalities hold 

‘1 Periodic solutions of the problem on forced vibrations of oscillating systems which are 
of some practical interest, have been obtained for a much wider class of loads. The re- 
striction imposed here is due to the same reasons which caused the author of [I] to lirn- 
it himself to small order terms in the system studied in Section 9, Chapt. 2 of [ 11. 
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maxt I L by (6) I < b maxf I F(f) I (r, s = l,...,m) (2.11 
uy (f) +- (0 )...I F, (t) = F(f) ,..*, O), h 0 rs > 

where h,, are constants. -Let us consider the system 

Q8’ = o,t(Pr + * . .+ “JF* + 9, (1) + V3, (cpt, . . ., Ok’ Et:, . . 1, f,, t* P) (s = 1, . . ., k 

u (l) * (Ql (WI, . . .P 9)k), . . ., Qm (WI, . . .I (Pk)), El=El(U)* .. .* E, = Em (4 (2.7) 

where U(L) corresponds to the system possessing the filter property defined above. We shall 

assume that the functions Qt,..., Q, are defined on some region C of the space’ of varfables 

+ t,..., & and, that they h ave continuous second order derivatives in all their arguments in 

this region. Assumptions concerning the smoothness of remaining functions shall be those 

used in [I], Chapt. 2, Section 9 (with 5, essumed equal to $63 and the closed domain of 

definition of 0, belongin 

Q 

to the space of variables 4t,..., &, et,..., [,,, shall be denoted 
by C,; functions T), and , shall be assumed Ztr-periodic in t which appears in them ex- 
plicitly, and we shall assume that the system 

q s (OF = a,,q,‘o) +. . . + ff~~~~(O) + ‘1, ft) (SE i, . ..‘ k) (2.31 

admits a family of 2n-periodic solutions with j constants 

q (O) = cp J (O’ (t al, . s ’ . .1 aj) (2.4) 

(relevant demands on the coefficients of (2.3) and v.(t) and on the form of solutions are 
given in [l], Chapt. 2, Section 4). Let us now construct a system of Eqs. 

(2.5) 
2x I: 

pi (zlr . . ,, aj) E & 5 2 eii (ipp), . . ., tp!;te. r&@), . . ., $$I, t, 0) zBi (t) dt = 0 

0 ,C=l 
(i = 1, . . ., j) 

$0) (1, a:. . . .* aj) = 5, (u(O) (t)), u”‘(l) c (Qr (up 
1 (O), . . ., qpdO’)t . . ., Q, ((p,(O), . + +, W,_(O))) 

where the functions I * (6 = l,..., k; i = l,+.., ] 

P 

‘) form of set of j periodic solutions of a 

system conjugate to e homogeneous system obtained from (2.3) b.y patting r/,(t) w 9. 

Then the following generalization of the theorem appearing in Section 9, Chept. 2 of ID 
cun be given. 

Let the system (2.5) admit the following simple solution: 

al=ut+, .,.,Cfj=aj* 

such that 

(0) tP** > *“t q# E G, (0) PI. **‘*t tp$‘, E,!o). . . ..ffakG. whenr>O 

‘pl!O) = (pi(O) (I, al*, . . ., Cfj*) etc. 

Then for 0 < &c(~ where p. is a constant, the system (2.2) admits a 2n-periodic sofu- 

tion such that the corresponding functions 4,(t, g),..., $,,{r, # ), ct(r, CC ),..v &,k f.t ) re- 

main in C and G, when t >, 0, become C#I Jo) (:),..., 5‘,‘,0) (t) when & = 0, and such, that the 
ssquencss of fn-ptriodic functions b, t rn (8, f,t f,..., [An (t, f.t ) @ = 1. 2) defined by the 

following Eqs. 

cp 8 @)’ = “rt’P*(P) +. * .+ a811’PK(P) + 9, (0 + (2.6) 

+ pe, ((P1(P-‘1, . , ., ‘Pn (e-1)‘ Et@_‘), . . .* &$? t, IL) (r= 1, * . ** k) 

ufpf .- (Qt (q@). . . .t r&t’)). . . -I Q, (q$ (P) , . . ..Q~‘)) 

converge uniformly to the solution &(t, & )FV [, (r* Ir )* 

‘Iho pmof of the above mcmtioned theorem will suffice here (it is fairly complex, since 
the valuea of the constautr appesring in it mnqt be estimated st esc) atage of the proof); 
we moot however oonstrnct the fnaquslfde~ connecting &zp) - &P-t)\ with l&(19 - 
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- qy’l) I)...) lqp - c$k’P-“I in order to obtain all the neceaaary estimates. This is 

possible, since by (2.1) the values of (&(fl - f,(fl-l)I can be estimated from 

1 Qs (q~r(‘), . . ., (p&s)) - Qs &‘I@-? . . .t (ps(P-lf) 1 (s--1, . . ..m) 

while the remaining magnitudes are estimated by 

~g~,(p)-W,(p--l~I (r=i, . . ..k) 

utilising, the Li pshits conditions for Qs. 

If [I has a bound, then we can, in a number of cases, show also that the sequence u(p) 

converges to the solution. 
Such theorems make it possible to extend the results obtained .when the small parameter 

method is applied to systems possessing a finite number of degrees of freedom, to the case 
of systems possessing the filter property elucidated above. Rozenvaaaer obtained in [6] a 
number of such results for various approximate methods of determination of periodic soiu- 
tions, while studying the corresponding integial equations. Our assertion given above 
shows, that in this sense the method of small parameter in the case of a family of genera- 
ting solutions, is no exception. 

3. The process described in Section 1 by which the solution of the problem on excita- 

tion of oscillations is reduced to constructing the relations (1.10) and solving the problem 
on forced oscillationa, cannot be applied to the resonant case. A special resonant proce- 
dure, which follows, is required in this case to obtain the periodic solutions. We shall con- 
fine ourselves to oscillating systems with a finite number of degrees of freedom. From the 
previous assumptions it follows that, for the oscillating systems considered in the resonant 
case. the following relations are valid 

M=M,+pdM,, C=co+pccl, Y = WV f = p/1 (3.1) 

where the matrices Mo and Co are such, that the polynomials 

A N (h) = det 11 co - AMu 11 (3.2) 

has a number of roota, all of which have values equal to the squares of natural numbers. 
The system (1.1) will thus become 

9’ = @ 6% t) + P Q (tp, E”t E”, E”, t, CL) (3.3) 
m 

M,,u" + C,,u = -,[dM 1~” + gBu' + cClu -a Q~(lp~cp.)q,]+P2... 
r=1 

We further assume that at least one of the numbers d, c and g is different from zero; 
the case d = c = g = 0 corresponds to the oscillating system without friction tuned exactly 
to the resonant frequency, and is not of interest. 

Let the polynomial A&) have h roots v t2,..., vhz, their values equal to the squares 

of natural numbers (each of them counted the number of times equal to their m~tiplici~) 
and let the remainingff - h roots differ from the squares of natural numbers by magnitudes 

of the order of unit II. 

We shall assume that the matrices M, Ho, C, Co and E are symmetric, C, Co and E are 

nonnegative, while M and MO are positive dcffnite;.these assumptions are compatible with 

the requirements imposed by the physical demands of the problem. 

Then, 2n-periodic solutions of the generating system obtained from (3.3) by putting /.t = 
= 0, will form a family with i + 2h constants ot,..., a,, A,, ,..., A xpx , D,, ,..., D xp . These 
solutions will be of the form 

a 

cp(O) = tp(@) (t, a), np cwi v,t + Dno sin v,t) unP (3.4) 
n=1 P=l 

where p, denotes the multiplicity of the root h= vn2 of the polynomial A,(A); x is the 
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number of different roots of the given type and. obviously, pt + . . . + px = 6. WC should 

note that under these assumptions the multiple roots of AdxX) have the corresponding linc- 

ar elementary divisors [7], while the cigcnvectors utt ,...,.uYPX , u k+i ,.+., uN, where the 

lamt N - h vectors correspond to the roots differing from the squares of ,natural numbers, 

form the basis on the configurational space of the oscillating system. Thin basis is assumed 

to be o~honormaliscd, in the sense that 

where up and uy are any two eigenvectors and a,, is the Kroncckcr delta. 

First j equations defining the parameters of the generating resonant solution are cona- 

tructed analogously to (1.91. They have the form 

Pitat,. . .,aj, Ali, . . ., &P~, Dn, . . .,&a,) E (i=i,. .,i) (3.6) 

1 
a= I: 

-_- 
- 2S (2 

&g (t, at, . . . , @j, Art, . . ., A XPx. Dttv-t Dxp,)~pi (t, ~(tt..., Uj)dt=O 

0 F=l 

where cop* arc the components of the vector 8(#‘), e(O), PO)‘, t(O)*; $ 01; and the fced- 

back vector s(o) appearing here should be obtained as a function of the following constants, 

A tt*...* D XPx in accordance with the relations [i”) = (u(O), 4.) from (3.4). 

The remaining U equations arc obtained from the condition that the forms of the cosine 

and sine frequency components v,(n = l,,.., XI of the right-hand side of the accond Eq. of 

(3.3) should be orthogonal to all eigenvectora un t,..., u npn corresponding to the value v,, 2. 

WC shall write these equations (assuming that all v,(n = I,,.., X) enter (1.5); the terms con- 

taining vc and not appearing in (1.51, will simply not appear in (3.4)) in the form 

Pj+u+p (al, * * *t aj, Anat * * . t Anen, Dnlr . - . v Dzwn) f 

@=1 t.-., p,; n=i ,.‘., x) (3.7) 

The resonant procedure consists of conetructing Eqs. (3.6) and (3.71, obtaining from them 
the parametem of the generating solution, etc. 

WC shall now consider au oscillating system characterized by a certain number of para- 
meters (maaacs, rigidities, coefficients of friction etc.). We shall describe as resonant that 
part of the parametric apace, in which (3.1) hold, and as nonresonant - that, in which the 
nonresonant easumptiona given in Section 1 are valid. We shall write the matrices M and C 

as 

M = MO + 6M,, c = c, + oc1 (3-B) 

The rclstions (1.10) hold in the nonresonant region 

a; = a:!(. . .,fA-,, Y”, . . .) (i’i,. * .,i) P-9) 
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We note that the mrtriccr X; and Y’, exist also at some points of the resonant region 
when p is sufficiently small (the case of d 
have a’ = 0 (l//A and j7cf$ 

= c = g = 0 is excluded) and in this came we 
= 0 (1). Let us select a point in the rcsonaut region and as- 

sume that functions CQ* arc defined on some part of the space of their arguments and are 

continuous on it over the whole set. Let us also aasumc that the magnitudes fizy’ In = 

= l,... , X; r, s = l,..,, m) computed for the given point (in whichj= pj,, o- PC, 8= Id, 
y = &g) belong to the rcgion of definition of a,*. We shall determine Q; at the point in ques- 

tion of the resonant region using the relations (3.9). 
Next we shall show that the magnitudes * U, thus defined, arc connected with the ma*it- 

udts a,** obtained for the given point of the resonant region from the relations (3.6) and 

(3.71, by 

&:*=~t+wL) (i= 1,. . ., j) (3.10) 

With this purpose in mind, we shall consider the equation of forced oscillations of an 
oscillating system where the oscillations are excited by a load computed according to the 
generating solution for some U t,..., at 

m 

MU(“)” + yBu’ + Cu = f 2 Q, (q(O) (t, a)) qr (3.11) 

Eq. (3.11) admits a M-periodic solution at any point of the nonresonant region. We shall 
seek it in the form 

U(‘) =: i 2 (Us’ COS Vt + lit’sin vt) (3.12) 
r=1 ” 

Fourier coefficients uy”’ 1 and uy~) are obtained, in accordance with (l.S), from 

(C- v”iW) us) -+ q'vBu$' = f Q:' cos 6,, qr 

- q%BuS:) + (C - vaM) u$’ = f Q$) sin 6,” q,. (3.13) 
We shall seek the solution of (3.13) in the form of series in terms of the vectors utt,..., 

u xp, S u,,+l ,**-, uN (3.14) 

uli) = i &y)um + 5 Y~~fU,, &’ = jj 2 wy’u*p + 5 w$b, 
n==1 P=l 141+1 ?I==1 P==l ldfl 

which is possible, since these vectors form a basis in the configurational space of the OS- 

cillating system. 
The following system of 2N linear algebraic equations yields the coefficients of (3.14): 

i 2 [((C -vcM) un~, u,,) ~f’?‘~ + vr (Bunp, u,,) t&Y)] + (3.15) 
n==1 P=l 

N 

+ 2 [((C - v’M) ~1, u,,) dt’ 4 VY (Bur, u,) d:‘l - fQ$:’ ~0s 9,v (qr, u,,) = 0 
l=h+l 

;;& - vy (Bu,, Un) up + ((C - v%z) uw, z&J z&y’] + 

n=l P=l 
N 

Here u,, is an aigenvactor and Eqs. (3.15) arc constructed for each of the N vectors 
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All the oysterno of Eqe. (3.15) can be solved in the nonresonant region. If, for some 

particular point of thiw region, we WIG them to obtain v,.~**) and Waft) as functions of 

ar ,.,,, atI obtain a solution of (3.11) from (3.14) and (3.121, compute for this solution the 

feedback parametera, ittnrat them into small order terma of (1.11, take a mean valoe and find 

a;,..., a *,, then we shall find that the latter values can be obtained from (3.9), when fK, 

and ‘$, have vahtsr corresponding to the given point. The above systems have solutions at 

the previonaly chor&t point of the resonant region, and the described sequence of operations 

yfeldm tba values of tag*,..., u,* corresponding to this point. 

To see what form is assumed by (3.15) in the resouant region, we put M = Mo + gdM, , 

C = C, + pcC,, y= pg and /= /of, and assume that v in (3.15) is equal to some v,, belong- 

ing to vt ,.*., V* * Taking the orthonormalizing conditions (3.5) into account we obtain: 

- r,(g; cos %-vn (qr, u,,) = 0 (w= I, . . ., p,) 

for the values of ‘1 in (3.151 corresponding to the vectors II, t,..., unPn and 

(3.16) 

Only the *‘cosine” equations corresponding to the first Eq. of (3.151 are given in (3.161 

and (3.171; “sine” equations have analogous form. All equations corresponding to the val- 

ues of vc (VI,..., V,) will have the form of (3.17). 

Relations (3.16) and (3.171 yield 

(ll, 0) 
vrvn ? w-, 5 tnVplr= 0 (1) (p = 1, . 1 ., pa, n = 1. . . .) x). 

v (a 
rv , w,p = 0 (/A) 

for all remaining values of v and 7. Therefore, from (3.12) and (3.141, after performing the 
summation over r, we obtain 

~(0) = $J $ (i.&:“’ cos v,t + wt’j sin v,t) unp + 0 (p) (3.28) 
n-4 P=l 

Eqs. (3.16) aad tbe corresponding eine equations, after the summation over r (see (3.711, 
yield 

(n, 1) (u*P I W.lJ 
Pj-+.n+p(al,. - .,aj, Vvn , . - +, VU_ * ,WU, 9.. -, w~‘n)) + 0 (p) = 0 

p;+n+d. * .)-t-O(p)= 0 
(3.19) 

(p = i, . . ., p,, n = i, . . ., xl 

and we fiaally obtain the following relations: 

tn. 0) 
%I (al, . . .) Cij) = Aw (al, . . .fUj) + o(p), wd”,‘@(. . .) =&A.. .) (3-20) 

This proves the following. If we use the nonre~onmt procedure for a point belongfug to 
the resonant region to obtain the feedback parameters as fnnctions of QI ,..., a, with the 



accnt8cy of the order of the sm8ll p8mmeter, the result will be idsntic81 to that obteined, 

when the feedb8ck parsmetem are computed 8ccording to the second Eq. of (3.4) in which 

Anp(aI,..., a,) sttd Da 
P 
a,,..., 

ky(‘a)8nd phure $$’ 

a,) ue obt8fned from (3.7). In other words, if the feedbsck 

coefficients are computed for a point belonging to the rsoonant re= 

gion 8nd the relation8 (1.10) are n8ed dkreg8tding the f8ct th8t k, (“)= G!(l/p), then the 

resulting m8gnitudes at*,..., a,* will coincide (with tbe accuracy tf the order of ~1 with 

the magnitudes LX:*,..., a;* obtained by meuI8 of the resonant procedure. Thir showa the 

correctness of (3.10) and it wa8 ettt8bliahed that (1.10) may be 8180 applied to the msonsnt 

C88e. 
Converse procedure - use of the resonant solution to determine nonreaonmat oscillstions, 

is equivalent to retaining in the expansion of the solution of (3.12) into a Fourier 8eries 
and in the expansions of the coefficients in terms of the eigenvectom uu only tho8u term& 
which bring a contribution of the order of unity into the initial resonant region, uLd neglec- 

ting the remaining terms. If (1.5) does not contain the values of v not appeuing in (3.4) and 
the vectors qr are linear combinationa of the vectors unp (the latter is obviously necesssry 

for an oucillating system with one degree of freedom), then the reeonent generating l olntion 

will coincide witb the nonresonuut one everywhere. 
From this we can infer, that, if we only wish to construct a solution, then, for a system 

of the type of (1.1) the resonant case need not be considered aepuately. Comparfron of tht 
conditions of stability fn both c8ses become8 interesting in thi8 context. Let ns take, for 

example, the problem of oscillation8 gener8ted by a rotating unbJ8nced body. Conditfons 
of stability obtained in [4] p u on considering the vibrator 88 an 8fmo8t con8erv8tive object 

and under nonreaonsnt assumption8. coincide with the corresponding condition obtained by 
Kononenko in f3] by, what f8 in f8ct. 8 re8onsnt procednn. 
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